期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:496
A horseshoe with a discontinuous entropy spectrum
Article
Javornik, Pavel1  Winter, Joseph2  Wolf, Christian2 
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[2] CUNY City Coll, Dept Math, New York, NY 10031 USA
关键词: Multifractal spectra;    Hyperbolicity;    Entropy spectrum;    Lyapunov exponents;    Discontinuity;   
DOI  :  10.1016/j.jmaa.2020.124811
来源: Elsevier
PDF
【 摘 要 】

We study the regularity of the entropy spectrum of the Lyapunov exponents for hyperbolic maps on surfaces. It is well-known that the entropy spectrum is a concave upper semi-continuous function which is analytic on the interior of the set of Lyapunov exponents. In this paper we construct a family of horseshoes with a discontinuous entropy spectrum at the boundary of the set of Lyapunov exponents. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2020_124811.pdf 408KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次