期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:488
On the rattleback dynamics
Article
Tudoran, Razvan M.1  Girban, Anania2 
[1] West Univ Timisoara, Fac Math & Comp Sci, Dept Math, Blvd Vasile Parvan 4, Timisoara 300223, Romania
[2] Politehn Univ Timisoara, Dept Math, Piata Victoriei 2, Timisoara 300006, Romania
关键词: Equilibria;    Periodic orbits;    Heteroclinic orbits;    Energy-Casimir mapping;    Stability;    Asymptotic stabilization;   
DOI  :  10.1016/j.jmaa.2020.124066
来源: Elsevier
PDF
【 摘 要 】

In this paper we present some relevant dynamical properties of an idealized conservative model of the rattleback, from the Poisson dynamics point of view. In the first half of the article, along with a dynamical study of the orbits, using a Hamilton-Poisson realization of the dynamical system, we provide a geometric characterization of the space of orbits in terms of Whitney stratifications associated to the image of the energy-Casimir mapping. In the second half of the article we provide an explicit method to stabilize asymptotically any arbitrary fixed orbit/cycle of the rattleback system and to keep unchanged the geometry of the model space. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2020_124066.pdf 1445KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次