期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:324
Weighted norm inequalities of Bochner-Riesz means
Article
Lee, Ming-Yi
关键词: A(p) weights;    atomic decomposition;    Bochner-Riesz means;    molecular characterization;    weighted Hardy spaces;   
DOI  :  10.1016/j.jmaa.2005.07.085
来源: Elsevier
PDF
【 摘 要 】

Let w be a Muckenhoupt weight and H-w(p)(R-n) be the weighted Hardy spaces. We use the atomic decomposition of H-w(p)(R-n) and their molecular characters to show that the Bochner-Riesz means T-R(delta) are bounded on H-w(p)(R-n) for 0 < p <= 1 and delta > max{n/p - (n + 1)/2, [n/p]r(w)(r(w) - 1)(-1) - (n + 1)/2}, where r(w) is the critical index of w for the reverse Holder condition. We also prove the H-w(p) - L-w(p) boundedness of the maximal Bochner-Riesz means T-*(delta) for 0 < p <= 1 and delta > n/p - (n + 1)/2. (c) 2006 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2005_07_085.pdf 140KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次