JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:337 |
Boundedness and unboundedness results for some maximal operators on functions of bounded variation | |
Article | |
Aldaz, J. M.1  Lazaro, J. Perez1,2  | |
[1] Univ La Rioja, Dept Matemat & Comp, Logrona 26004, La Rioja, Spain | |
[2] Univ Publ Navarra, Dept Matemat & Informat, Pamplona 31006, Navarra, Spain | |
关键词: maximal function; Sobolev spaces; bounded variation functions; | |
DOI : 10.1016/j.jmaa.2007.03.097 | |
来源: Elsevier | |
【 摘 要 】
We characterize the space BV(I) of functions of bounded variation on an arbitrary interval I subset of R, in terms of a uniform boundedness condition satisfied by the local uncentered maximal operator M-R from BV(I) into the Sobolev space W-1,W-1(I). By restriction, the corresponding characterization holds for W-1,W-1(I). We also show that if U is open in R-d, d > 1, then boundedness from BV(U) into W-1,W-1(U) fails for the local directional maximal operator M-T(v) the local strong maximal operator M-T(S), and the iterated local directional maximal operator M-T(d) o...o M-T(1). Nevertheless, if U satisfies a cone condition, then M-T(S):BV(U) -> L-1(U) boundedly, and the same happens with M-T(v), M-T(d) o...o M-T(1), and M-R. (C) 2007 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2007_03_097.pdf | 184KB | download |