期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:377
Meromorphic extendibility and rigidity of interpolation
Article
Raghupathi, Mrinal2  Yattselev, Maxim1 
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[2] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
关键词: Meromorphic extensions;    Winding number;    Interpolation;   
DOI  :  10.1016/j.jmaa.2010.11.060
来源: Elsevier
PDF
【 摘 要 】

Let T be the unit circle, f be an alpha-Holder continuous function on T, alpha > 1/2, and A be the algebra of continuous function in the closed unit disk (D) over tilde that are holomorphic in D. Then f extends to a meromorphic function in D with at most m poles if and only if the winding number of f + h on T is bigger or equal to -m for any h epsilon A such that f + h not equal 0 on T. (c) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2010_11_060.pdf 154KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次