期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:377 |
Meromorphic extendibility and rigidity of interpolation | |
Article | |
Raghupathi, Mrinal2  Yattselev, Maxim1  | |
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA | |
[2] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA | |
关键词: Meromorphic extensions; Winding number; Interpolation; | |
DOI : 10.1016/j.jmaa.2010.11.060 | |
来源: Elsevier | |
【 摘 要 】
Let T be the unit circle, f be an alpha-Holder continuous function on T, alpha > 1/2, and A be the algebra of continuous function in the closed unit disk (D) over tilde that are holomorphic in D. Then f extends to a meromorphic function in D with at most m poles if and only if the winding number of f + h on T is bigger or equal to -m for any h epsilon A such that f + h not equal 0 on T. (c) 2010 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2010_11_060.pdf | 154KB | download |