期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:404
Maximal surface area of a convex set in Rn with respect to exponential rotation invariant measures
Article
Livshyts, Galyna
关键词: Convex bodies;    Convex polytopes;    Surface area;    Gaussian measures;   
DOI  :  10.1016/j.jmaa.2013.03.014
来源: Elsevier
PDF
【 摘 要 】

Let p be a positive number. Consider the probability measure gamma(p) with density phi(p)(y) = c(n,p)e-(vertical bar y vertical bar p/p) . We show that the maximal surface area of a convex body in R-n with respect to gamma(p) is asymptotically equivalent to Cp(p)n(3/4-1/p), where the constant C(p) depends on p only. This is a generalization of results due to Ball (1993) [1] and Nazarov (2003) [9] in the case of the standard Gaussian measure gamma(2). (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2013_03_014.pdf 388KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次