期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:363
Asymptotic uncorrelation for Mexican needlets
Article
Mayeli, Azita
关键词: Spherical harmonics;    Spherical Laplacian operator;    Wavelets;    Mexican needlets;    Second-order isotropy;    Angular power spectrum;    Legendre (Gegenbauer) polynomials;   
DOI  :  10.1016/j.jmaa.2009.07.044
来源: Elsevier
PDF
【 摘 要 】

We recall Mexican needlets from [D. Geller, A. Mayeli, Continuous wavelets on compact manifolds, Math. Z. 262 (4) (2009) 895-927; D. Geller, A. Mayeli, Nearly tight frames and space-frequency analysis on compact manifolds, Math. Z. 263 (2) (2009) 234-264]. We derive an estimate for certain types of Legendre series, which we apply to the statistical properties of Mexican needlets. More precisely, we shall show that, under isotropy assumption, the Mexican needlet coefficients of a random field on the sphere are asymptotically uncorrelated, as the frequency parameter goes to infinity. This property is important in the analysis of spherical random fields, in particular in connection to the analysis of Cosmic Microwave Background (CMB) radiation data. Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2009_07_044.pdf 193KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:1次