| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:342 |
| Liouville type theorems for p-harmonic maps | |
| Article | |
| Moon, Dong Joo1  Liu, Huili2  Dal Jung, Seoung1  | |
| [1] Jeju Natl Univ, Dept Math, Cheju 690756, South Korea | |
| [2] Northeastern Univ, Dept Math, Shenyang 110004, Peoples R China | |
| 关键词: p-harmonic map; p-harmonic morphism; Liouville type theorem; | |
| DOI : 10.1016/j.jmaa.2007.12.018 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Let M be a complete Riemannian manifold and let N be a Riemannian manifold of non-positive sectional curvature. Assume that Ric(M) >= - 4(p-1)/p(2)mu(0) at all x is an element of M and > - 4(p-1)/p(2)mu(0) at some point x(0) is an element of M, where where mu(0) > 0 is the least eigenvalue of the Laplacian acting on L-2-functions on M. Let 2 <= q <= p. Then any q-harmonic map phi: M -> N of finite q-energy is constant. Moreover, if N is a Riemannian manifold of non-positive scalar curvature, then any q-harmonic morphism phi: M -> N of finite q-energy is constant. (C) 2007 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmaa_2007_12_018.pdf | 122KB |
PDF