期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:342
Liouville type theorems for p-harmonic maps
Article
Moon, Dong Joo1  Liu, Huili2  Dal Jung, Seoung1 
[1] Jeju Natl Univ, Dept Math, Cheju 690756, South Korea
[2] Northeastern Univ, Dept Math, Shenyang 110004, Peoples R China
关键词: p-harmonic map;    p-harmonic morphism;    Liouville type theorem;   
DOI  :  10.1016/j.jmaa.2007.12.018
来源: Elsevier
PDF
【 摘 要 】

Let M be a complete Riemannian manifold and let N be a Riemannian manifold of non-positive sectional curvature. Assume that Ric(M) >= - 4(p-1)/p(2)mu(0) at all x is an element of M and > - 4(p-1)/p(2)mu(0) at some point x(0) is an element of M, where where mu(0) > 0 is the least eigenvalue of the Laplacian acting on L-2-functions on M. Let 2 <= q <= p. Then any q-harmonic map phi: M -> N of finite q-energy is constant. Moreover, if N is a Riemannian manifold of non-positive scalar curvature, then any q-harmonic morphism phi: M -> N of finite q-energy is constant. (C) 2007 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2007_12_018.pdf 122KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次