JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:459 |
A system of nonlinear equations with application to large deviations for Markov chains with finite lifetime | |
Article | |
Hu, Ze-Chun2  Sun, Wei3  Zhang, Jing1  | |
[1] Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Hainan, Peoples R China | |
[2] Sichuan Univ, Coll Math, Chengdu 610064, Sichuan, Peoples R China | |
[3] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada | |
关键词: System of nonlinear equations; Continuous-time Markov chain; Finite lifetime; Occupation time distribution; Large deviation principle; | |
DOI : 10.1016/j.jmaa.2017.11.032 | |
来源: Elsevier | |
【 摘 要 】
In this paper, we first show the existence of solutions to the following system of nonlinear equations {a(11)x(1) + a(12)x(2) + ... + a(1n)x(n) = b(11)1/x(1) + b(12) 1/x(2) + ... + b(1n) 1/x(n), a(21) 1/x(1) + a(22) x(2)/x(1) + ... + a(2n) x(n)/x(1) = b(21)x(1) + b(22) x(1)/x(2) + ... + b(2n) x(1)/x(n), ...... a(k,k-1) 1/x(k-1) + Sigma(1 <= j <= n j not equal k-1) a(kj) x(j)/x(k-1) = b(k,k) (-1)x(k-1) + Sigma(1 <= j <= n j not equal k-1) b(kj) x(k-1)/x(j), ...... a(n,n-1) 1/x(n-1) + Sigma(1 <= j <= n j not equal k-1) a(nj) x(j)/x(n-1) = b(n,n) (-) (1)x(n-1) + Sigma(1 <= j <= n j not equal k-1) b(nj) x(n-1)/x(j), where n >= 2 and a(jj), b(ij),1 <= i, j <= n, are positive constants. Then, we make use of this result to obtain the large deviation principle for the occupation time distributions of continuous-time finite state Markov chains with finite lifetime. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2017_11_032.pdf | 316KB | download |