期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:384
Non-differentiable embedding of Lagrangian systems and partial differential equations
Article
Cresson, Jacky1,2  Greff, Isabelle1,3 
[1] Univ Pau & Pays Adour, Lab Math Appl Pau, F-64013 Pau, France
[2] Observ Paris, Inst Mecan Celeste & Calcul Ephemerides, F-75014 Paris, France
[3] Max Planck Inst Math Nat Wissensch Leipzig, D-04103 Leipzig, Germany
关键词: Non-differentiable calculus of variations;    Lagrangian systems;    Navier-Stokes equation;    Schrodinger equation;   
DOI  :  10.1016/j.jmaa.2011.06.008
来源: Elsevier
PDF
【 摘 要 】

We develop the non-differentiable embedding theory of differential operators and Lagrangian systems using a new operator on non-differentiable functions. We then construct the corresponding calculus of variations and we derive the associated non-differentiable Euler-Lagrange equation, and apply this formalism to the study of PDEs. First, we extend the characteristics method to the non-differentiable case. We prove that non-differentiable characteristics for the Navier-Stokes equation correspond to extremals of an explicit non-differentiable Lagrangian system. Second, we prove that the solutions of the Schrodinger equation are non-differentiable extremals of the Newton's Lagrangian. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2011_06_008.pdf 273KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次