期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:360
Positive solutions for Robin problem involving the p(x)-Laplacian
Article
Deng, Shao-Gao1,2 
[1] SW Jiaotong Univ, Sch Math, Chengdu 610031, Sichuan, Peoples R China
[2] Lanzhou Univ, Dept Math, Lanzhou 730000, Gansu, Peoples R China
关键词: p(x)-Laplacian;    Robin problem;    Positive solution;    Sub-supersolution method;    Variational method;   
DOI  :  10.1016/j.jmaa.2009.06.032
来源: Elsevier
PDF
【 摘 要 】

Consider Robin problem involving the p(x)-Laplacian on a smooth bounded domain Omega as follows {-Delta(rho(x))u =lambda f (x, u) in Omega, vertical bar del u vertical bar(rho(x)-2)partial derivative u/partial derivative eta + beta vertical bar u vertical bar(rho(x)-2)u = 0 on partial derivative Omega. Applying the sub-supersolution method and the variational method, under appropriate assumptions on f, we prove that there exists lambda(*) > 0 such that the problem has at least two positive solutions if lambda is an element of (0, lambda(*)), has at least one positive solution if lambda = lambda(*) < + infinity and has no positive solution if lambda > lambda(*). To prove the results, we prove a norm on W-1.rho(x)(Omega) without the part of vertical bar .vertical bar L-rho(x)( Omega) which is equivalent to usual one and establish a special strong comparison principle for Robin problem. (C) 2009 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2009_06_032.pdf 240KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次