期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:362
A sequential quadratically constrained quadratic programming method for unconstrained minimax problems
Article
Jian, Jin-bao2  Chao, Mian-tao1 
[1] Guangxi Coll Educ, Dept Math & Comp Sci, Nanning 530023, Peoples R China
[2] Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Peoples R China
关键词: Minimax programs;    Quadratic constraints;    Quadratic programming;    Global convergence;    Convergence rate;   
DOI  :  10.1016/j.jmaa.2009.08.046
来源: Elsevier
PDF
【 摘 要 】

In this paper, a sequential quadratically constrained quadratic programming (SQCQP) method for unconstrained minimax problems is presented. At each iteration the SQCQP method solves a subproblem that involves convex quadratic inequality constraints and a convex quadratic objective function. The global convergence of the method is obtained under much weaker conditions without any constraint qualification. Under reasonable assumptions, we prove the strong convergence, superlinearly and quadratic convergence rate. (C) 2009 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2009_08_046.pdf 222KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次