期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:375
Finite-dimensional attractors for the Kirchhoff equation with a strong dissipation
Article
Yang Zhijian1  Li Xiao1 
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Peoples R China
关键词: Initial-boundary value problem;    Kirchhoff equation;    Infinite-dimensional dynamical system;    Global attractor;    Exponential attractor;   
DOI  :  10.1016/j.jmaa.2010.09.051
来源: Elsevier
PDF
【 摘 要 】

The paper studies the existence of the finite-dimensional global attractors and exponential attractors for the dynamical system associated with the Kirchhoff type equation with a strong dissipation u(tt) M(parallel to del u parallel to(2))Delta u - Delta u(t) + h(u(t)) + g(u) = f(x). It proves that the above mentioned dynamical system possesses a global attractor which has finite fractal dimension and an exponential attractor. For application, the fact shows that for the concerned viscoelastic flow the permanent regime (global attractor) can be observed when the excitation starts from any bounded set in phase space, and the dimension of the attractor, that is, the number of degree of freedom of the turbulent phenomenon and thus the level of complexity concerning the flow, is finite. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2010_09_051.pdf 237KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次