期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:380
On a singular and nonhomogeneous N-Laplacian equation involving critical growth
Article
de Souza, Manasses2  do O, Joao Marcos1 
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, PB, Brazil
[2] Univ Fed Pernambuco, Dept Matemat, BR-50740540 Recife, PE, Brazil
关键词: Variational methods;    Quasilinear elliptic equations;    Trudinger-Moser inequality;    Critical points;    Critical exponents;   
DOI  :  10.1016/j.jmaa.2011.03.028
来源: Elsevier
PDF
【 摘 要 】

In this paper we apply minimax methods to obtain existence and multiplicity of weak solutions for singular and nonhomogeneous elliptic equation of the form -Delta(N)u = f(x, u)/|x|a + h(x) in Omega, where u epsilon W-0(1,N)(Omega), Delta(N)u =diV(|del u|(N-2 del)u) is the N-Laplacian, a epsilon [0, N), Omega is a smooth bounded domain in R-N (N >= 2) containing the origin and h epsilon (W-0(1,N)(Omega))* = W--1,W-N' is a small perturbation, h not equivalent to 0. Motivated by a singular Trudinger-Moser inequality, we study the case when f (x, s) has the maximal growth on s which allows to treat this problem variationally in the Sobolev space W-0(1,N)(Omega). (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2011_03_028.pdf 299KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:1次