期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:405
An isometric study of the Lindeberg-Feller central limit theorem via Stein's method
Article
Berckmoes, B.1  Lowen, R.1  Van Casteren, J.1 
[1] Univ Antwerp, Dept Math & Comp Sci, Antwerp, Belgium
关键词: Approach structure;    Distance;    Limit;    Weak topology;    Probability measure;    Law;    Random variable;    Central limit theorem;    Lindeberg condition;    Kolmogorov metric;    Triangular array;   
DOI  :  10.1016/j.jmaa.2013.04.012
来源: Elsevier
PDF
【 摘 要 】

We use Stein's method to prove a generalization of the Lindeberg-Feller CLT providing an upper and a lower bound for the superior limit of the Kolmogorov distance between a normally distributed random variable and the rowwise sums of a rowwise independent triangular array of random variables which is asymptotically negligible in the sense of Feller. A natural example shows that the upper bound is of optimal order. The lower bound improves a result by Andrew Barbour and Peter Hall. (c) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2013_04_012.pdf 447KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:3次