期刊论文详细信息
| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:405 |
| An isometric study of the Lindeberg-Feller central limit theorem via Stein's method | |
| Article | |
| Berckmoes, B.1  Lowen, R.1  Van Casteren, J.1  | |
| [1] Univ Antwerp, Dept Math & Comp Sci, Antwerp, Belgium | |
| 关键词: Approach structure; Distance; Limit; Weak topology; Probability measure; Law; Random variable; Central limit theorem; Lindeberg condition; Kolmogorov metric; Triangular array; | |
| DOI : 10.1016/j.jmaa.2013.04.012 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We use Stein's method to prove a generalization of the Lindeberg-Feller CLT providing an upper and a lower bound for the superior limit of the Kolmogorov distance between a normally distributed random variable and the rowwise sums of a rowwise independent triangular array of random variables which is asymptotically negligible in the sense of Feller. A natural example shows that the upper bound is of optimal order. The lower bound improves a result by Andrew Barbour and Peter Hall. (c) 2013 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmaa_2013_04_012.pdf | 447KB |
PDF