JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:412 |
On fundamental harmonic analysis operators in certain Dunkl and Bessel settings | |
Article | |
Castro, Alejandro J.1  Szarek, Tomasz Z.2  | |
[1] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Sta Cruz De Ten, Spain | |
[2] Polish Acad Sci, Inst Matemat, PL-00956 Warsaw, Poland | |
关键词: Dunkl Laplacian; Bessel Laplacian; Dunkl transform; Hankel transform; Maximal operator; Square function; Multiplier; Riesz transform; Lusin area integral; Calderon-Zygmund operator; | |
DOI : 10.1016/j.jmaa.2013.11.020 | |
来源: Elsevier | |
【 摘 要 】
We consider several harmonic analysis operators in the multi-dimensional context of the Dunk! Laplacian with the underlying group of reflections isomorphic to Z(2)(n) (also negative values of the multiplicity function are admitted). Our investigations include maximal operators, g-functions, Lusin area integrals, Riesz transforms and multipliers of Laplace and Laplace-Stieltjes transform type. Using the general Calderon-Zygmund theory we prove that these objects are bounded in weighted L-p spaces, 1 < p < infinity, and from L-1 into weak L-1. (C) 2013 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2013_11_020.pdf | 456KB | download |