期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:412
On fundamental harmonic analysis operators in certain Dunkl and Bessel settings
Article
Castro, Alejandro J.1  Szarek, Tomasz Z.2 
[1] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Sta Cruz De Ten, Spain
[2] Polish Acad Sci, Inst Matemat, PL-00956 Warsaw, Poland
关键词: Dunkl Laplacian;    Bessel Laplacian;    Dunkl transform;    Hankel transform;    Maximal operator;    Square function;    Multiplier;    Riesz transform;    Lusin area integral;    Calderon-Zygmund operator;   
DOI  :  10.1016/j.jmaa.2013.11.020
来源: Elsevier
PDF
【 摘 要 】

We consider several harmonic analysis operators in the multi-dimensional context of the Dunk! Laplacian with the underlying group of reflections isomorphic to Z(2)(n) (also negative values of the multiplicity function are admitted). Our investigations include maximal operators, g-functions, Lusin area integrals, Riesz transforms and multipliers of Laplace and Laplace-Stieltjes transform type. Using the general Calderon-Zygmund theory we prove that these objects are bounded in weighted L-p spaces, 1 < p < infinity, and from L-1 into weak L-1. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2013_11_020.pdf 456KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次