期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:456
Maximum principle for quasi-linear reflected backward SPDEs
Article
Fu, Guanxing1  Horst, Ulrich1  Qiu, Jinniao2 
[1] Humboldt Univ, Dept Math, Unter Linden 6, D-10099 Berlin, Germany
[2] Univ Calgary, Dept Math & Stat, 2500 Univ Dr, Calgary, AB T2N 1N4, Canada
关键词: Reflected backward stochastic partial differential equation;    Backward stochastic partial differential equation;    Maximum principle;    De Giorgi's iteration;   
DOI  :  10.1016/j.jmaa.2017.06.047
来源: Elsevier
PDF
【 摘 要 】

This paper establishes a maximum principle for quasi-linear reflected backward stochastic partial differential equations (RBSPDEs for short). We prove the existence and uniqueness of the weak solution to RBSPDEs allowing for nonzero Dirichlet boundary conditions and, using a stochastic version of De Giorgi's iteration, establish the maximum principle for RBSPDEs on a general domain. The maximum principle for RBSPDEs on a bounded domain and the maximum principle for backward stochastic partial differential equations (BSPDEs for short) on a general domain can be obtained as byproducts. Finally, the local behavior of the weak solutions is considered. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2017_06_047.pdf 500KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次