期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:495
Representation of non-semibounded quadratic forms and orthogonal additivity
Article
Ibort, Alberto1,2  Llavona, Jose G.3  Lledo, Fernando1,2  Manuel Perez-Pardo, Juan1,2 
[1] Univ Carlos III Madrid, Avda Univ 30, Leganes 28911, Madrid, Spain
[2] Inst Ciencias Matemat CSIC UAM UC3M UCM, Nicolas Cabrera 13-15, Canto Blanco 28049, Madrid, Spain
[3] Univ Complutense Madrid, Plaza Ciencias 3, Madrid 28040, Spain
关键词: Representations non-semibounded quadratic forms;    Direct integrals;    Orthogonal additivity;    Spectral theorem;   
DOI  :  10.1016/j.jmaa.2020.124783
来源: Elsevier
PDF
【 摘 要 】

A representation theorem for non-semibounded Hermitian quadratic forms in terms of a (non-semibounded) self-adjoint operator is proven. The main assumptions are closability of the Hermitian quadratic form, the direct integral structure of the underlying Hilbert space and orthogonal additivity. We apply this result to several examples, including the position operator in quantum mechanics and quadratic forms invariant under a unitary representation of a separable locally compact group. The case of invariance under a compact group is also discussed in detail. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2020_124783.pdf 566KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次