期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:371
Sobolev type inequalities on Riemannian manifolds
Article
Adriano, Levi2  Xia, Changyu1 
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[2] Univ Fed Goias, Inst Matemat & Estat, BR-74001900 Goiania, Go, Brazil
关键词: Gagliardo-Nirenberg inequalities;    Log-Sobolev inequalities;    Riemannian manifolds;    Asymptotically non-negative Ricci curvature;    Maximal volume growth;   
DOI  :  10.1016/j.jmaa.2010.05.043
来源: Elsevier
PDF
【 摘 要 】

This paper studies Sobolev type inequalities on Riemannian manifolds. We show that on a complete non-compact Riemannian manifold the constant in the Gagliardo-Nirenberg inequality cannot be smaller than the optimal one on the Euclidean space of the same dimension. We also show that a complete non-compact manifold with asymptotically non-negative Ricci curvature admitting some Gagliardo-Nirenberg inequality is not very far from the Euclidean space. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2010_05_043.pdf 204KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次