期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:446
Essential spectrum of the discrete Laplacian on a perturbed periodic graph
Article
Sasaki, Itaru1  Suzuki, Akito2 
[1] Shinshu Univ, Fac Sci, Dept Math Sci, Asahi Ku, Matsumoto, Nagano 3908621, Japan
[2] Shinshu Univ, Fac Engn, Div Math & Phys, Wakasato, Nagano 3808553, Japan
关键词: Infinite graph;    Essential spectrum;    Perturbation theory;    Discrete Laplacian;    Pendant;    Random graph;   
DOI  :  10.1016/j.jmaa.2016.09.063
来源: Elsevier
PDF
【 摘 要 】

We address the Laplacian on a perturbed periodic graph which might not be a periodic graph. We give a criterion for the essential spectrum of the Laplacian on the perturbed graph to include that on the unperturbed graph. This criterion is applicable to a wide class of graphs obtained by a non-compact perturbation such as adding or removing infinitely many vertices and edges. Using this criterion, we demonstrate how to determine the spectra of cone-like graphs, the upper-half plane, and graphs obtained from Z(2) by randomly adding vertices. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2016_09_063.pdf 1032KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:3次