期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:472
A note on the run length function for intermittent maps
Article
Cui, Hongfei1  Fang, Lulu2  Zhang, Yiwei3 
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Hubei, Peoples R China
[2] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
[3] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Ctr Math Sci, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
关键词: Run length function;    Intermittent maps;    Erdos-Renyi law;   
DOI  :  10.1016/j.jmaa.2018.11.058
来源: Elsevier
PDF
【 摘 要 】

We study the run length function for intermittent maps. In particular, we show that the longest consecutive zero digits (resp. one digits) having a time window of polynomial (resp. logarithmic) length. Our proof is relatively elementary in the sense that it only relies on the classical Borel-Cantelli lemma and the polynomial decay of intermittent maps. Our results are compensational to the Erdos-Renyi law obtained by Denker and Nicol in [8]. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2018_11_058.pdf 534KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次