期刊论文详细信息
| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:472 |
| A note on the run length function for intermittent maps | |
| Article | |
| Cui, Hongfei1  Fang, Lulu2  Zhang, Yiwei3  | |
| [1] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Hubei, Peoples R China | |
| [2] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China | |
| [3] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Ctr Math Sci, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China | |
| 关键词: Run length function; Intermittent maps; Erdos-Renyi law; | |
| DOI : 10.1016/j.jmaa.2018.11.058 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We study the run length function for intermittent maps. In particular, we show that the longest consecutive zero digits (resp. one digits) having a time window of polynomial (resp. logarithmic) length. Our proof is relatively elementary in the sense that it only relies on the classical Borel-Cantelli lemma and the polynomial decay of intermittent maps. Our results are compensational to the Erdos-Renyi law obtained by Denker and Nicol in [8]. (C) 2018 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmaa_2018_11_058.pdf | 534KB |
PDF