期刊论文详细信息
| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:485 |
| Mountain pass solutions to Euler-Lagrange equations with general anisotropic operator | |
| Article | |
| Chmara, M.1  Maksymiuk, J.1  | |
| [1] Gdansk Univ Technol, Dept Tech Phys & Appl Math, Narutowicza 11-12, PL-80233 Gdansk, Poland | |
| 关键词: Anisotropic Orlicz-Sobolev space; Euler-Lagrange equations; Mountain Pass Theorem; Palais Smale condition; | |
| DOI : 10.1016/j.jmaa.2019.123809 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Using the Mountain Pass Theorem we show that the problem {(d/dt L-v (t, u(t), (u) over dot(t)) = L-x(t, u(t), (u) over dot(t))) for a.e. t is an element of [a, b] u(a) = u(b) = 0 has a solution in anisotropic Orlicz-Sobolev space. We consider Lagrangian L = F(t, x, v) + V (t, x) + ( f (t), x) with growth conditions determined by anisotropic G-function and some geometric conditions of Ambrosetti-Rabinowitz type. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmaa_2019_123809.pdf | 340KB |
PDF