期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:485
Mountain pass solutions to Euler-Lagrange equations with general anisotropic operator
Article
Chmara, M.1  Maksymiuk, J.1 
[1] Gdansk Univ Technol, Dept Tech Phys & Appl Math, Narutowicza 11-12, PL-80233 Gdansk, Poland
关键词: Anisotropic Orlicz-Sobolev space;    Euler-Lagrange equations;    Mountain Pass Theorem;    Palais Smale condition;   
DOI  :  10.1016/j.jmaa.2019.123809
来源: Elsevier
PDF
【 摘 要 】

Using the Mountain Pass Theorem we show that the problem {(d/dt L-v (t, u(t), (u) over dot(t)) = L-x(t, u(t), (u) over dot(t))) for a.e. t is an element of [a, b] u(a) = u(b) = 0 has a solution in anisotropic Orlicz-Sobolev space. We consider Lagrangian L = F(t, x, v) + V (t, x) + ( f (t), x) with growth conditions determined by anisotropic G-function and some geometric conditions of Ambrosetti-Rabinowitz type. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2019_123809.pdf 340KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:0次