JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:320 |
The Jordan-von Neumann constants and fixed points for multivalued nonexpansive mappings | |
Article | |
Dhompongsa, S. ; Dominguez Benavides, T. ; Kaewcharoen, A. ; Kaewkhao, A. ; Panyanak, B. | |
关键词: multivalued nonexpansive mapping; weakly convergent sequence coefficient; Jordan-von Neumann constant; normal structure; regular asymptotically uniform sequence; | |
DOI : 10.1016/j.jmaa.2005.07.063 | |
来源: Elsevier | |
【 摘 要 】
The purpose of this paper is to study the existence of fixed points for nonexpansive multivalued mappings in a particular class of Banach spaces. Furthermore, we demonstrate a relationship between the weakly convergent sequence coefficient WCS(X) and the Jordan-von Neumann constant C-NJ (X) of a Banach space X. Using this fact, we prove that if CNJ(X) is less than an appropriate positive number, then every multivalued nonexpansive mapping T: E --> KC(E) has a fixed point where E is a nonempty weakly compact convex subset of a Banach space X, and KC(E) is the class of all nonempty compact convex subsets of E. (C) 2005 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2005_07_063.pdf | 132KB | download |