期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:349
Invariants of two- and three-dimensional hyperbolic equations
Article
Tsaousi, C.1  Sophocleous, C.1  Tracina, R.2 
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
[2] Dipartimento Matemat & Informat, I-95125 Catania, Italy
关键词: Hyperbolic equations;    Equivalence transformations;    Differential invariants;    Point transformations;   
DOI  :  10.1016/j.jmaa.2008.09.004
来源: Elsevier
PDF
【 摘 要 】

We consider linear hyperbolic equations of the form u(tt) = Sigma(n)(i=1) u(xixi) + Sigma(n)(i=1) X-i(x(1).....x(n).t) u(xi) + T (x(1).....x(n).t)u(t) + U(x(1)......x(n).t)u. We derive equivalence transformations which are used to obtain differential invariants for the cases n = 2 and n = 3. Motivated by these results, we present the general results for the n-dimensional case. It appears (at least for n = 2) that this class of hyperbolic equations admits differential invariants of order one, but not of order two. We employ the derived invariants to construct interesting mappings between equivalent equations. (c) 2008 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2008_09_004.pdf 201KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次