期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:418
Global well-posedness and stability of semilinear Mindlin-Timoshenko system
Article
Pei, Pei1  Rammaha, Mohammad A.1  Toundykov, Daniel1 
[1] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
关键词: Plate;    Mindlin-Timoshenko;    Reissner-Mindlin;    Damping;    Source;    Potential well;    Global existence;    Stability;    Decay rates;    Blow-up;   
DOI  :  10.1016/j.jmaa.2014.03.014
来源: Elsevier
PDF
【 摘 要 】

We study long-term behavior of Reissner-Mindlin-Timoshenko (RMT) plate systems, focusing on the interplay between nonlinear viscous damping and source terms. The sources may represent restoring forces, but may also be focusing thus potentially amplifying the total energy which is the primary scenario of interest. This work complements [28] which established local well-posedness of this problem, global well-posedness when damping dominates the sources (in an appropriate sense) and a blow-up in the complementary scenario assuming negative total initial energy. The current paper develops the potential well theory for the RMT system: it proves global existence for potential well solutions without restricting the source exponents, derives explicit energy decay rates dependent on the order of the damping exponents, and verifies a blow-up result for positive total initial energy. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2014_03_014.pdf 521KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次