期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:458 |
Lower estimates of L∞-norm of gradients for Cauchy problems | |
Article | |
Fujita, Yasuhiro1  | |
[1] Univ Toyama, Dept Math, Toyama 9308555, Japan | |
关键词: Lipschitz constants; Lower estimates; Optimality; Parabolic equations; Hamilton Jacobi equations; Logarithmic Sobolev inequality; | |
DOI : 10.1016/j.jmaa.2017.08.045 | |
来源: Elsevier | |
【 摘 要 】
In this paper, we consider the Cauchy problems for a uniformly parabolic equation and a Hamilton-Jacobi equation. Our aim is to show the optimality of an upper estimate of the L-infinity-norm of the gradient of solution to each Cauchy problem. In order to achieve this aim, we investigate a lower estimate of this L-infinity-norm. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2017_08_045.pdf | 365KB | download |