期刊论文详细信息
| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:458 |
| Lower estimates of L∞-norm of gradients for Cauchy problems | |
| Article | |
| Fujita, Yasuhiro1  | |
| [1] Univ Toyama, Dept Math, Toyama 9308555, Japan | |
| 关键词: Lipschitz constants; Lower estimates; Optimality; Parabolic equations; Hamilton Jacobi equations; Logarithmic Sobolev inequality; | |
| DOI : 10.1016/j.jmaa.2017.08.045 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
In this paper, we consider the Cauchy problems for a uniformly parabolic equation and a Hamilton-Jacobi equation. Our aim is to show the optimality of an upper estimate of the L-infinity-norm of the gradient of solution to each Cauchy problem. In order to achieve this aim, we investigate a lower estimate of this L-infinity-norm. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmaa_2017_08_045.pdf | 365KB |
PDF