期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:458
Lower estimates of L∞-norm of gradients for Cauchy problems
Article
Fujita, Yasuhiro1 
[1] Univ Toyama, Dept Math, Toyama 9308555, Japan
关键词: Lipschitz constants;    Lower estimates;    Optimality;    Parabolic equations;    Hamilton Jacobi equations;    Logarithmic Sobolev inequality;   
DOI  :  10.1016/j.jmaa.2017.08.045
来源: Elsevier
PDF
【 摘 要 】

In this paper, we consider the Cauchy problems for a uniformly parabolic equation and a Hamilton-Jacobi equation. Our aim is to show the optimality of an upper estimate of the L-infinity-norm of the gradient of solution to each Cauchy problem. In order to achieve this aim, we investigate a lower estimate of this L-infinity-norm. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2017_08_045.pdf 365KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次