期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:485
An endpoint Balian-Low theorem for Schauder bases
Article
Leshen, Sara1  Powell, Alexander M.2 
[1] Rutgers Univ Camden, Dept Math Sci, Camden, NJ 08102 USA
[2] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
关键词: Time-frequency analysis;    Gabor system;    Schauder basis;    Balian-Low theorem;   
DOI  :  10.1016/j.jmaa.2019.123774
来源: Elsevier
PDF
【 摘 要 】

We prove two new results on the validity of the Balian-Low theorem in the setting of Schauder bases. Our first main result proves an endpoint Balian-Low theorem for Gabor systems that form Schauder bases for L-2(R): if g is an element of L-2(R) is compactly supported and f|xi|(2)ck < d xi < infinity then the Gabor system G(g, 1, 1) cannot be aSchauder basis of-called type A. Our second main result proves that the classical Balian-Low theorem for orthonormal bases and Riesz bases fails in the setting of Schauder bases. In particular, given e > 0, there exists g E L2(R) such that g(g, 1, 1) is a Schauder basis for L2(R) and such that d xi no. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2019_123774.pdf 383KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:0次