期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:332
The critical exponents for the quasi-linear parabolic equations with inhomogeneous terms
Article
Zeng, Xianzhong
关键词: quasi-linear parabolic equations;    inhomogeneous terms;    sub-solution;    monotone increasing;    blow-up;    global existence;   
DOI  :  10.1016/j.jmaa.2006.11.034
来源: Elsevier
PDF
【 摘 要 】

This paper deals with the critical exponents for the quasi-linear parabolic equations in R-n and with an inhomogeneous source, or in exterior domains and with inhomogeneous boundary conditions. For n >= 3, sigma > -2/n and p > max {1, 1 + sigma}, we obtain that p(c) = n(1 + sigma)/(n - 2) is the critical exponent of these equations. Furthermore, we prove that if max {1, 1 + sigma} < p <= p(c) then every positive solution of these equations blows up in finite time; whereas these equations admit the global positive solutions for some f(x) and some initial data u(0)(x) if p > p(c) Meantime, we also demonstrate that every positive solution of these equations blows up in finite time provided n = 1, 2, sigma > -1 and p > max {1, 1 + sigma}. (C) 2006 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2006_11_034.pdf 190KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:2次