| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:334 |
| Real Paley-Wiener theorems for the Koornwinder-Swarttouw q-Hankel transform | |
| Article | |
| Abreu, Luis Daniel | |
| 关键词: Paley-Wiener theorems; q-Hankel transform; | |
| DOI : 10.1016/j.jmaa.2006.12.050 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We derive two real Paley-Wiener theorems in the setting of quantum calculus. The first uses techniques due to Tuan and Zayed [V.K. Tuan, A.I. Zayed, Paley-Wiener-type theorems for a class of integral transforms, J. Math. Anal. Appl. 266 (1) (2002) 200-226] in order to describe the image of the space L-q(2)(0. R) under Koornwinder and Swarttouw q-Hankel transform [T.H. Koornwinder, R.F. Swarttouw, On q-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333 (1) (1992) 445461] and contains as a special case a description of the domain of the q-sampling theorem associated with the q-Hankel transform [L.D. Abreu, A q-sampling theorem related to the q-Hankel transform, Proc. Arner. Math. Soc. 133 (4) (2005) 1197-1203]. The second characterizes the image of compactly supported q-smooth functions under a rescaled version of the q-Hankel transform and is a q-analogue of a recent result due to Andersen [N.B. Andersen, Real Paley-Wiener theorems for the Hankel transform, J. Fourier Anal. Appl. 12 (1) (2006) 17-25]. (c) 2007 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmaa_2006_12_050.pdf | 134KB |
PDF