期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:334
Real Paley-Wiener theorems for the Koornwinder-Swarttouw q-Hankel transform
Article
Abreu, Luis Daniel
关键词: Paley-Wiener theorems;    q-Hankel transform;   
DOI  :  10.1016/j.jmaa.2006.12.050
来源: Elsevier
PDF
【 摘 要 】

We derive two real Paley-Wiener theorems in the setting of quantum calculus. The first uses techniques due to Tuan and Zayed [V.K. Tuan, A.I. Zayed, Paley-Wiener-type theorems for a class of integral transforms, J. Math. Anal. Appl. 266 (1) (2002) 200-226] in order to describe the image of the space L-q(2)(0. R) under Koornwinder and Swarttouw q-Hankel transform [T.H. Koornwinder, R.F. Swarttouw, On q-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333 (1) (1992) 445461] and contains as a special case a description of the domain of the q-sampling theorem associated with the q-Hankel transform [L.D. Abreu, A q-sampling theorem related to the q-Hankel transform, Proc. Arner. Math. Soc. 133 (4) (2005) 1197-1203]. The second characterizes the image of compactly supported q-smooth functions under a rescaled version of the q-Hankel transform and is a q-analogue of a recent result due to Andersen [N.B. Andersen, Real Paley-Wiener theorems for the Hankel transform, J. Fourier Anal. Appl. 12 (1) (2006) 17-25]. (c) 2007 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2006_12_050.pdf 134KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次