期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:338
p-adic Schrodinger-type operator with point interactions
Article
Albeverio, S.2,3,4  Kuzhel, S.1  Torba, S.1 
[1] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
[2] Univ Bonn, Inst Angewandte Math, D-53115 Bonn, Germany
[3] SFB 611, BiBoS, Bonn, Germany
[4] CERFIM, USI, Locarno, Switzerland
关键词: p-adic analysis;    p-adic Schrodinger-type operator;    point interactions;    p-adic wavelet basis;    pseudo-Hermitian quantum mechanics;    eta-self-adjoint operators;    C-symmetry;   
DOI  :  10.1016/j.jmaa.2007.06.016
来源: Elsevier
PDF
【 摘 要 】

A p-adic Schrodinger-type operator D-alpha + V-Y is studied. D-alpha (alpha > 0) is the operator of fractional differentiation and V-Y = Sigma(n)(i,j) b(ij)(delta(xj),.)delta(xi) (b(ij) is an element of C) is a singular potential containing the Dirac delta functions delta(x) concentrated on a set of points Y = {x(1),..., x(n)} of the field of p-adic numbers Q(p). It is shown that such a problem is well posed for alpha > 1/2 and the singular perturbation V-Y is form-bounded for alpha > 1. In the latter case, the spectral analysis of eta-self-adjoint operator realizations of D-alpha+V-Y in L-2(Q(p)) is carried out. (C) 2007 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2007_06_016.pdf 241KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:1次