期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:360
Small noise asymptotics for invariant densities for a class of diffusions: A control theoretic view
Article
Biswas, Anup2  Borkar, Vivek S.1 
[1] Tata Inst Fundamental Res, Sch Technol & Comp Sci, Bombay 400005, Maharashtra, India
[2] Tata Inst Fundamental Res, Ctr Appl Math, Bangalore 560065, Karnataka, India
关键词: Diffusions;    Invariant density;    Small noise limit;    Hamilton-Jacobi equation;    Viscosity solution;   
DOI  :  10.1016/j.jmaa.2009.06.070
来源: Elsevier
PDF
【 摘 要 】

We consider multi-dimensional nondegenerate diffusions with invariant densities, with the diffusion matrix scaled by a small epsilon > 0. The o.d.e. limit corresponding to epsilon = 0 is assumed to have the origin as its unique globally asymptotically stable equilibrium. Using control theoretic methods, we show that in the epsilon down arrow 0 limit, the invariant density has the form approximate to exp(-W(x)/epsilon(2)), where the W is characterized as the optimal cost of a deterministic control problem. This generalizes an earlier work of Sheu. Extension to multiple equilibria is also given. (C) 2009 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2009_06_070.pdf 186KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次