期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:417
Positive least energy solutions for a coupled Schrodinger system with critical exponent
Article
Ye, Hongyu1  Peng, Yanfang2 
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Guizhou Normal Univ, Dept Math & Comp Sci, Guiyang 550001, Peoples R China
关键词: Coupled Brezis-Nirenberg problem;    Positive least energy solutions;    Critical exponents;    Variational methods;   
DOI  :  10.1016/j.jmaa.2014.03.028
来源: Elsevier
PDF
【 摘 要 】

In this paper, we consider the following coupled Schrodinger system with doubly critical exponents, which can be seen as a counterpart of the Brezis-Nirenberg problem: {-Delta u + lambda(1)u = mu(1)u(5) + beta u(2)v(3), x is an element of Omega, -Delta v + lambda(2)v = mu(2)v(5) + beta v(2)u(3), x is an element of Omega, u > 0, v > 0, x is an element of Omega, u=v=0, x is an element of partial derivative Omega, where Omega subset of R-3 is a smooth bounded domain, lambda(1), lambda(2) < 0, mu(1), mu(2) > 0 and beta > 0. Under certain conditions on lambda(1), lambda(2) and beta, we show that this problem has at least one positive least energy solution. (C) 2014 Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2014_03_028.pdf 372KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次