期刊论文详细信息
| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:403 |
| Fractional Pearson diffusions | |
| Article | |
| Leonenko, Nikolai N.1  Meerschaert, Mark M.2  Sikorskii, Alla2  | |
| [1] Cardiff Univ, Cardiff Sch Math, Cardiff CF24 4YH, S Glam, Wales | |
| [2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA | |
| 关键词: Pearson diffusion; Fractional derivative; Eigenfunction expansion; Stable process; Hitting time; Mittag-Leffler function; | |
| DOI : 10.1016/j.jmaa.2013.02.046 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also presents stochastic solutions, using a non-Markovian inverse stable time change. (C) 2013 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmaa_2013_02_046.pdf | 437KB |
PDF