| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:418 |
| The second critical exponent for a semilinear nonlocal parabolic equation | |
| Article | |
| Yang, Chunxiao1  Ji, Feiyu1  Zhou, Shuangshuang2  | |
| [1] Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Peoples R China | |
| [2] Hunan City Univ, Sch Math & Computat Sci, Yiyang 413000, Peoples R China | |
| 关键词: Nonlocal source; The second critical exponent; Blow-up; Global; | |
| DOI : 10.1016/j.jmaa.2014.03.095 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
This article considers the Cauchy problem for a semilinear nonlocal parabolic equation ut = Delta u + (f(R)n, K(y)u(q)(y,t)dy)p-(1/q) u(r+1) in Er x (0,T), where p, q >= 1, gamma >= 0 and p + gamma > 1. We study the second critical exponent, i.e. describing the critical smallness of initial data required by global solutions (non-global solutions) via the decay rates of the initial data at spatial infinity. Differently from other parabolic equations, the second critical exponent is related to n in this problem when K is not an element of L-1 (R-n). (C) 2014 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmaa_2014_03_095.pdf | 254KB |
PDF