期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:418
The second critical exponent for a semilinear nonlocal parabolic equation
Article
Yang, Chunxiao1  Ji, Feiyu1  Zhou, Shuangshuang2 
[1] Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Peoples R China
[2] Hunan City Univ, Sch Math & Computat Sci, Yiyang 413000, Peoples R China
关键词: Nonlocal source;    The second critical exponent;    Blow-up;    Global;   
DOI  :  10.1016/j.jmaa.2014.03.095
来源: Elsevier
PDF
【 摘 要 】

This article considers the Cauchy problem for a semilinear nonlocal parabolic equation ut = Delta u + (f(R)n, K(y)u(q)(y,t)dy)p-(1/q) u(r+1) in Er x (0,T), where p, q >= 1, gamma >= 0 and p + gamma > 1. We study the second critical exponent, i.e. describing the critical smallness of initial data required by global solutions (non-global solutions) via the decay rates of the initial data at spatial infinity. Differently from other parabolic equations, the second critical exponent is related to n in this problem when K is not an element of L-1 (R-n). (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2014_03_095.pdf 254KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次