期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:464
On the independent perturbation parameters and the number of limit cycles of a type of Lienard system
Article
Yang, Junmin1,2  Yu, Pei2  Sun, Xianbo3 
[1] Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Hebei, Peoples R China
[2] Western Univ, Dept Appl Math, London, ON N6A 5B7, Canada
[3] Guangxi Univ Finance & Econ, Dept Appl Math, Nanning 530003, Guangxi, Peoples R China
关键词: Lienard system;    Independent parameter;    Limit cycle;   
DOI  :  10.1016/j.jmaa.2018.04.020
来源: Elsevier
PDF
【 摘 要 】

In this paper, we study a type of polynomial Lienard system of degree m (m >= 2) with polynomial perturbations of degree n. We prove that the first order Melnikov function of such system has at most n + 1 - [n+1/m+1] independent perturbation parameters which can be used to simplify this kind of systems. As an application, we study a type of Lienard systems for m = 4, n = 19, 28 and obtain the new lower bounds of the maximal number of limit cycles. (C) 2018 Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2018_04_020.pdf 451KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次