期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:471
The asymptotic formulas for coefficients and algebraicity of Jacobi forms expressed by infinite product
Article
Jin, Seokho1  Jo, Sihun2 
[1] Chung Ang Univ, Dept Math, 84 Heukseok Ro, Seoul 06974, South Korea
[2] Woosuk Univ, Dept Math Educ, 443 Samnye Ro, Wanju Gun 55338, Jeollabuk Do, South Korea
关键词: Jacobi forms;    Theta functions;    q-series;   
DOI  :  10.1016/j.jmaa.2018.10.096
来源: Elsevier
PDF
【 摘 要 】

We determine asymptotic formulas for the Fourier coefficients of Jacobi forms expressed by infinite products with Jacobi theta functions and the Dedekind eta function. These are generalizations of results about the growth of the Fourier coefficients of Jacobi forms given by an inverse of Jacobi theta function to derive the asymptotic behavior of the Betti numbers of the Hilbert scheme of points on an algebraic surface by Bringmann-Manschot and about the asymptotic behavior of the chi(y)-genera of Hilbert schemes of points on K3 surfaces by Manschot-Rolon. We also get the algebraicity of the generating functions given by Gottsche for the Hilbert schemes associated to general algebraic surfaces. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2018_10_096.pdf 439KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次