期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:480
On isometric embeddings of Wasserstein spaces - the discrete case
Article
Geher, Gyorgy Pal1  Titkos, Tamas2,3  Virosztek, Daniel4 
[1] Univ Reading, Dept Math & Stat, POB 220, Reading RG6 6AX, Berks, England
[2] Hungarian Acad Sci, Alfred Renyi Inst Math, Realltanoda U 13-15, H-1053 Budapest, Hungary
[3] BBS Univ Appl Sci, Alkotmany U 9, H-1054 Budapest, Hungary
[4] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
关键词: Wasserstein space;    Isometric embeddings;    Probability measures;    Discrete metric;   
DOI  :  10.1016/j.jmaa.2019.123435
来源: Elsevier
PDF
【 摘 要 】

The aim of this short paper is to offer a complete characterization of all (not necessarily surjective) isometric embeddings of the Wasserstein space W-p(chi), where chi is a countable discrete metric space and 0 < p < infinity is any parameter value. Roughly speaking, we will prove that any isometric embedding can be described by a special kind of chi x (0, 1]-indexed family of nonnegative finite measures. Our result implies that a typical non-surjective isometric embedding of W-p(chi) splits mass and does not preserve the shape of measures. In order to stress that the lack of surjectivity is what makes things challenging, we will prove alternatively that W-p(chi) is isometrically rigid for all 0 < p < infinity. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2019_123435.pdf 382KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:1次