期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:406
Backlund transformation and Wronskian solitons for the (2+1)-dimensional Nizhnik-Novikov-Veselov equations
Article
Shan, Wen-Rui1 
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
关键词: (2+1)-dimensional Nizhnik-Novikov-Veselov equations;    Hirota form;    Backlund transformation;    Wronskian determinant;    Collisions;    Symbolic computation;   
DOI  :  10.1016/j.jmaa.2013.01.009
来源: Elsevier
PDF
【 摘 要 】

Korteweg-de Vries-type equations are seen to describe the shallow water waves, stratified internal waves, ion-acoustic waves, plasma physics and lattice dynamics, an isotropic extension of which are the (2 + 1)-dimensional Nizhnik-Novikov-Veselov equations. Hereby, based on the Hirota bilinear method and symbolic computation, we derive the bilinear form and Backlund transformation for such an extension. N-soliton solutions in the Wronskian form are given, and it can be verified that the Backlund transformation can connect the (N - 1)- and N-soliton solutions. Solitonic propagation and collision are discussed: the larger-amplitude soliton moves faster and then overtakes the smaller one. After the collisions, the solitons keep their original shapes and velocities invariant except for the phase shift. Collisions among the two and three solitons are all elastic. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2013_01_009.pdf 7243KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次