期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:434
Radial positive solutions of nonlinear elliptic systems with Neumann boundary conditions
Article
Ma, Ruyun1  Gao, Hongliang1  Lu, Yanqiong1 
[1] NE Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
关键词: Elliptic system;    Neumann problems;    Positive increasing radial solutions;    Bifurcation;   
DOI  :  10.1016/j.jmaa.2015.09.065
来源: Elsevier
PDF
【 摘 要 】

We consider radial positive solutions of elliptic systems of the form {-Delta u + u = alpha(vertical bar x vertical bar) f(u, v) in B-R, -Delta v + v = beta(vertical bar x vertical bar) g(u, v) in B-R, partial derivative(v)u = partial derivative(v)u = 0 on partial derivative B-R, where essentially alpha, beta are assumed to be radially nondecreasing weights and f, g are nondecreasing in each component. We show the existence of at least one nondecreasing nontrivial radial solutions. Our result is sharp and is a complement for one of the main results in Bonheure et al. (2013) [2]. The proof of our main result is based upon bifurcation techniques. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2015_09_065.pdf 724KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次