期刊论文详细信息
| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:347 |
| Global unique solvability of 3D MHD equations in a thin periodic domain | |
| Article | |
| Chueshov, Igor | |
| 关键词: 3D MHD equations; thin domains; global existence and uniqueness; | |
| DOI : 10.1016/j.jmaa.2008.05.088 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We study magnetohydrodynamic equations for a viscous incompressible resistive fluid in a thin 3D domain. We prove the global existence and uniqueness of solutions corresponding to a large set of initial data from Sobolev type space of the order 1/2 and forcing terms from L-2 type space. We also show that the solutions constructed become smoother for positive time and prove the global existence of (unique) strong solutions. (C) 2008 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmaa_2008_05_088.pdf | 203KB |
PDF