期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:387
Bivariate second-order linear partial differential equations and orthogonal polynomial solutions
Article
Area, I.2  Godoy, E.1  Ronveaux, A.3  Zarzo, A.4,5 
[1] Univ Vigo, Dept Matemat Aplicada 2, EE Ind, Vigo 36310, Spain
[2] Univ Vigo, Dept Matemat Aplicada 2, EE Telecomunicac, Vigo 36310, Spain
[3] Catholic Univ Louvain, Dept Math, B-1348 Louvain, Belgium
[4] Univ Granada, Fac Ciencias, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain
[5] Univ Politecn Madrid, Dept Matemat Aplicada, ETS Ingenieros Ind, E-28040 Madrid, Spain
关键词: Second-order admissible potentially self-adjoint partial differential equations of hypergeometric type;    Bivariate orthogonal polynomials;    Rodrigues formula;    Generalized Kampe de Feriet hypergeometric series;    Appell polynomials;    Connection problems;   
DOI  :  10.1016/j.jmaa.2011.10.024
来源: Elsevier
PDF
【 摘 要 】

In this paper we construct the main algebraic and differential properties and the weight functions of orthogonal polynomial solutions of bivariate second-order linear partial differential equations, which are admissible potentially self-adjoint and of hypergeometric type. General formulae for all these properties are obtained explicitly in terms of the polynomial coefficients of the partial differential equation, using vector matrix notation. Moreover, Rodrigues representations for the polynomial eigensolutions and for their partial derivatives of any order are given. As illustration, these results are applied to a two parameter monic Appell polynomials. Finally, the non-monic case is briefly discussed. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2011_10_024.pdf 285KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次