JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:338 |
Isolated singularities of solutions to quasi-linear elliptic equations with absorption | |
Article | |
Liskevich, Vitali1  Skrypnik, I. I.2  | |
[1] Univ Coll Swansea, Dept Math, Swansea SA2 8PP, W Glam, Wales | |
[2] Inst Appl Math & Mech, Donetsk, Ukraine | |
关键词: isolated singularities; quasi-linear equations; kato-type classes; | |
DOI : 10.1016/j.jmaa.2007.05.018 | |
来源: Elsevier | |
【 摘 要 】
We study the problem of removability of isolated singularities for a general second-order quasi-linear equation in divergence form -divA(x, u, del u) + a(0)(x, u) + g(x, u) = 0 in a punctured domain Omega\{0}, where Omega is a domain in R-n, n >= 3. The model example is the equation -Delta(p)u + gu vertical bar u vertical bar(p-2) + u vertical bar u vertical bar(q-1) = 0, q > p-1 > 0, p < n. Assuming that the lower-order terms satisfy certain non-linear Kato-type conditions, we prove that for q >= n(p-1)/n-p all point singularities of the above equation are removable, thus extending the seminal result of Brezis and Veron. (c) 2007 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2007_05_018.pdf | 148KB | download |