期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:473
Real zeros of Hurwitz zeta-functions and their asymptotic behavior in the interval (0,1)
Article
Endo, Kenta1  Suzuki, Yuta1 
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词: Hurwitz zeta-function;    Real zeros;   
DOI  :  10.1016/j.jmaa.2018.12.001
来源: Elsevier
PDF
【 摘 要 】

Let 0 < a <= 1, s epsilon C, and zeta(s, a) be the Hurwitz zeta-function. Recently, Nakamura showed that zeta(sigma, a) does not vanish for any 0 < sigma < 1 if and only if 1/2 <= a <= 1. In this paper, we show that zeta(sigma, a) has precisely one zero in the interval (0, 1) if 0 < a < 1/2. Moreover, we reveal the asymptotic behavior of this unique zero with respect to a. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2018_12_001.pdf 306KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次