期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:473 |
Real zeros of Hurwitz zeta-functions and their asymptotic behavior in the interval (0,1) | |
Article | |
Endo, Kenta1  Suzuki, Yuta1  | |
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan | |
关键词: Hurwitz zeta-function; Real zeros; | |
DOI : 10.1016/j.jmaa.2018.12.001 | |
来源: Elsevier | |
【 摘 要 】
Let 0 < a <= 1, s epsilon C, and zeta(s, a) be the Hurwitz zeta-function. Recently, Nakamura showed that zeta(sigma, a) does not vanish for any 0 < sigma < 1 if and only if 1/2 <= a <= 1. In this paper, we show that zeta(sigma, a) has precisely one zero in the interval (0, 1) if 0 < a < 1/2. Moreover, we reveal the asymptotic behavior of this unique zero with respect to a. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2018_12_001.pdf | 306KB | download |