期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:485
Linear factorization of hypercyclic functions for differential operators
Article
Chan, Kit C.1  Hofstad, Jakob3  Walmsley, David2 
[1] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
[2] St Olaf Coll, Dept Math Stat & Comp Sci, Northfield, MN 55057 USA
[3] St Olaf Coll, Northfield, MN 55057 USA
关键词: Hypercyclicity;    Differentiation;    Translation;    Infinite product;    Entire functions;    Exponential type;   
DOI  :  10.1016/j.jmaa.2019.123804
来源: Elsevier
PDF
【 摘 要 】

On the Frechet space of entire functions H(C), we show that every nonscalar continuous linear operator L : H(C) -> H(C) which commutes with differentiation has a hypercyclic vector f(z) in the form of the infinite product of linear polynomials: f(z) = Pi(infinity )(j=1)(1 - z/a(j)), where each a(j) is a nonzero complex number. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2019_123804.pdf 428KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:1次