期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:480
On multiplicity of eigenvalues in quantum graph theory
Article
Pivovarchik, V.1 
[1] South Ukrainian Natl Pedag Univ, Staroportofrankovskaya Str 26, UA-65020 Odessa, Ukraine
关键词: Dirichlet boundary condition;    Neumann boundary condition;    Kirchhoff's condition;    Spectrum;    Tree;   
DOI  :  10.1016/j.jmaa.2019.123412
来源: Elsevier
PDF
【 摘 要 】

Spectral problems are considered generated by the Sturm-Liouville equation on equilateral trees with the Dirichlet boundary conditions at pendant vertices and continuity and Kirchhoff's conditions at interior vertices. It is shown that the eigenvalues of such problems approach asymptotically the eigenvalues of the problem on the same tree with zero potentials on the edges. It is shown that between any two eigenvalues of maximal multiplicity (p(pen)-1) where p(pen) is the number of pendant vertices there are p(in) eigenvalues (with account of multiplicity, where p(in) is the number of interior vertices in the tree). (C) 2019 Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2019_123412.pdf 372KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次