期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:294
J-self-adjointness of a class of Dirac-type operators
Article
Cascaval, R ; Gesztesy, F
关键词: Dirac-type operator;    J-self-adjointness;   
DOI  :  10.1016/j.jmaa.2004.02.002
来源: Elsevier
PDF
【 摘 要 】

In this note, we prove that the maximally defined operator associated with the Dirac-type differential expression M (Q) = i (d/dxI(m) -Q -Q* -d/dxI(m)) where Q represents a symmetric m x m matrix (i.e., Q(x)inverted perpendicular = Q(x) a.e.) with entries in L-loc(1)(R), is J-self-adjoint, where J is the antilinear conjugation defined by J = sigma(1)C, sigma = (0 I-m I-m 0) and C(a(1),..., a(m), b(1),..., b(m))inverted perpendicular = ((a) over bar (1),.., (a) over bar (m), (b) over bar (1),..., (b) over bar (m))inverted perpendicular. The differential expression M(Q) is of significance as it appears in the Lax formulation of the non-abelian (matrix-valued) focusing nonlinear Schrodinger hierarchy of evolution equations. (C) 2004 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2004_02_002.pdf 195KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次