期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:406
On complex symmetric operator matrices
Article
Jung, Sungeun1  Ko, Eungil2  Lee, Ji Eun1 
[1] Ewha Womans Univ, Inst Math Sci, Seoul 120750, South Korea
[2] Ewha Womans Univ, Dept Math, Seoul 120750, South Korea
关键词: Complex symmetric operator;    Property (beta);    Decomposable;    A-Weyl's theorem;   
DOI  :  10.1016/j.jmaa.2013.04.056
来源: Elsevier
PDF
【 摘 要 】

An operator T epsilon L (H) is said to be complex symmetric if there exists a conjugation J on H such that T = JT(*)J. In this paper, we find several kinds of complex symmetric operator matrices and examine decomposability of such complex symmetric operator matrices and their applications. In particular, we consider the operator matrix of the form T = [GRAPHICS] where j is a conjugation on H. We show that if A is complex symmetric, JA*J then T is decomposable if and only if A is. Furthermore, we provide some conditions so that a-Weyl's theorem holds for the operator matrix T. Crown Copyright (C) 2013 Published by Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2013_04_056.pdf 666KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:1次