期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:409
Local monotonicity structure of symmetric spaces with applications
Article
Ciesielski, Maciej1  Kolwicz, Pawel1  Panfil, Agata2 
[1] Poznan Univ Tech, Inst Math, PL-60965 Poznan, Poland
[2] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词: Symmetric Banach function spaces;    Orlicz-Lorentz spaces;    Lorentz spaces of maximal functions;    Best dominated approximation problems;    Local (global) monotonicity structure;    Order continuity;   
DOI  :  10.1016/j.jmaa.2013.07.028
来源: Elsevier
PDF
【 摘 要 】

In this paper we discuss several monotonicity properties in Banach lattices. We start with several general results on local structure of symmetric Banach function spaces discussing in particular whether a point x is an element of E has some local property if and only if its nonincreasing rearrangement x* has the same property (Section 2). In that section we also prove some general facts for nonincreasing rearrangements which may be of independent interest. Next, we apply these results to find complete criteria for local monotonicity structure of Lorentz spaces Gamma(p.omega) and Orlicz-Lorentz spaces Lambda(phi,omega) (Sections 3, 4.1 and 4.2). We conclude with the description of global monotonicity structure of Lorentz spaces Gamma(p.omega) (Section 4.3). We finish with the applications of upper monotonicity and lower monotonicity points to local best dominated approximation problems in Banach lattices (Section 5). (c) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2013_07_028.pdf 474KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次