期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:424
Rigidity of proper holomorphic self-mappings of the pentablock
Article
Su, Guicong1  Tu, Zhenhan1  Wang, Lei1 
[1] Wuhan Univ, Sch Math & Stat, Wuhan 480072, Hubei, Peoples R China
关键词: Automorphisms;    Hartogs domains;    Proper holomorphic self-mappings;    Symmetrized bidisc;    Pentablock;   
DOI  :  10.1016/j.jmaa.2014.10.092
来源: Elsevier
PDF
【 摘 要 】

The pentablock is a Hartogs domain in C-3 over the symmetrized bidisc in C-2. The domain is a bounded inhomogeneous pseudoconvex domain, which does not have a C-1 boundary. Recently, Agler-Lykova-Young constructed a special subgroup of the group of holomorphic automorphisms of the pentablock, and Kosinski fully described the group of holomorphic automorphisms of the pentablock. The aim of the present study is to prove that any proper holomorphic self-mapping of the pentablock must be an automorphism. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2014_10_092.pdf 316KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次