期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:456
Orbital instability of standing waves for the Klein-Gordon-Schrodinger system with quadratic-cubic nonlinearity
Article
Zhu, Qing1  Zhou, Zhan1  Luo, Tingjian1 
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
关键词: Klein-Gordon-Schrodinger system;    Standing waves;    Orbital instability;    Virial identity;   
DOI  :  10.1016/j.jmaa.2017.07.036
来源: Elsevier
PDF
【 摘 要 】

This paper studies the orbital instability of standing waves for the Klein-Gordon-Schrodinger system in three space dimensions. By variational methods we first show the existence of ground states. Then we establish a Virial identity for this system, by which and a Virial theorem, we manage to prove that the standing waves we obtained are orbital instable as if the frequency omega is sufficiently small. Our results improve and complement some previous ones. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2017_07_036.pdf 1027KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:1次